Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function?
نویسندگان
چکیده
Osmoregulating decapods such as the Mediterranean green crab Carcinus aestuarii possess two groups of spatially segregated gills: anterior gills serve mainly respiratory purposes, while posterior gills contain osmoregulatory structures. The co-existence of similar tissues serving different functions allows the study of differential adaptation, in terms of free radical metabolism, upon salinity change. Crabs were immersed for 2 weeks in seawater (SW, 37 ppt), diluted SW (dSW, 10 ppt) and concentrated SW (cSW, 45 ppt). Exposure to dSW was the most challenging condition, elevating respiration rates of whole animals and free radical formation in hemolymph (assessed fluorometrically using C-H2DFFDA). Further analyses considered anterior and posterior gills separately, and the results showed that posterior gills are the main tissues fueling osmoregulatory-related processes because their respiration rates in dSW were 3.2-fold higher than those of anterior gills, and this was accompanied by an increase in mitochondrial density (citrate synthase activity) and increased levels of reactive oxygen species (ROS) formation (1.4-fold greater, measured through electron paramagnetic resonance). Paradoxically, these posterior gills showed undisturbed caspase 3/7 activity, used here as a marker for apoptosis. This may only be due to the high antioxidant protection that posterior gills benefit from [superoxide dismutase (SOD) in posterior gills was over 6 times higher than in anterior gills]. In conclusion, osmoregulating posterior gills are better adapted to dSW exposure than respiratory anterior gills because they are capable of controlling the deleterious effects of the ROS production resulting from this salinity-induced stress.
منابع مشابه
Transcriptome sequencing revealed the genes and pathways involved in salinity stress of Chinese mitten crab, Eriocheir sinensis.
A total of 276.9 million reads were obtained and assembled into 206, 371 contigs with an average length of 614 bp and N50 of 1,470 bp. Comparison of digital gene expression between treatment and control group reveals 1,151 and 941 genes were significantly differentially expressed in crab gill and muscle, respectively. In gill and muscle, protein ubiquitination, ubiquinone biosynthesis, oxidativ...
متن کاملAtrazine-Mediated Oxidative Stress Responses and Lipid Peroxidation in the Tissues of Clarias gariepinus
Background: Fish have been at high risk of atrazine toxicity. Comparative atrazine toxicity on the tissues of Clarias gariepinus is scanty. Therefore, acute and chronic effects of atrazine on some biochemical parameters in Clarias gariepinus were investigated in this study. Methods: Atrazine toxicity was determined by assessing the responses of glucose, protein, alanine aminotransferase (ALT...
متن کاملSalt stress adaptation of Bacillus subtilis: a physiological proteomics approach.
The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth...
متن کاملThe Effect of Zinc Nutrition on Two Olive (Olea europaea L.) Cultivars Components and Alleviate Oxidative Damage in Salinity Conditions
The role of zinc (Zn) in enhancing defense capacity of several plants against salinity has been demonstrated but there is limited information on the impact of Zn nutrition on alleviating salinity-induced oxidative damage in olive. One-year-old seedlings of two varieties of olive (Olea europaea L. cvs. Frontoio and Conservolea) supplied with three Zn levels (0, 1 and 5 mM in the form of ZnSO4.7H...
متن کاملEffects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata
Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O[Formula: see text]) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 1 شماره
صفحات -
تاریخ انتشار 2016